Search results for "Quadratic field"
showing 8 items of 8 documents
Tsen–Lang Theory for Cpi-fields
1995
On the Quadratic Type of Some Simple Self-Dual Modules over Fields of Characteristic Two
1997
Let G be a finite group and let K be an algebraically closed field of Ž characteristic 2. Let V be a non-trivial simple self-dual KG-module we . say that V is self-dual if it is isomorphic to its dual V * . It is a theorem of w x Fong 4, Lemma 1 that in this case there is a non-degenerate G-invariant alternating bilinear form, F, say, defined on V = V. We say that V is a KG-module of quadratic type if F is the polarization of a non-degenerate w x G-invariant quadratic form defined on V. In a previous paper 6 , the present authors described some methods to decide if such a module V is of w x quadratic type. One of the main results of 6 is the following. Suppose that Ž . G is a group with a s…
On the classification of algebraic function fields of class number three
2012
AbstractLet F be an algebraic function field of one variable having a finite field Fq with q>2 elements as its field of constants. We determine all such fields for which the class number is three. More precisely, we show that, up to Fq-isomorphism, there are only 8 of such function fields. For q=2 the problem has been solved under the additional hypothesis that the function field is quadratic.
Unitary Groups Acting on Grassmannians Associated with a Quadratic Extension of Fields
2006
Let (V, H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V, H) in the set of K-subspaces of V . Throughout the paper K denotes a real closed field and K its algebraic closure. Then it is well known (see, for example, [4, Chapter 2], [23]; see also [8]) that K = K(i) with i = √−1. Also we let (V,H) be an anisotropic Hermitian space (with respect to the involution underlying the quadratic field extension K/K) of finite dimension n over K. In this context we consider the natural action of the unitary group U = U(V,H) of isometries of (V,H) on the set Xd of all ddimensional K-subs…
Quadratic rational solvable groups
2012
Abstract A finite group G is quadratic rational if all its irreducible characters are either rational or quadratic. If G is a quadratic rational solvable group, we show that the prime divisors of | G | lie in { 2 , 3 , 5 , 7 , 13 } , and no prime can be removed from this list. More generally, if G is solvable and the field Q ( χ ) generated by the values of χ over Q satisfies | Q ( χ ) : Q | ⩽ k , for all χ ∈ Irr ( G ) , then the set of prime divisors of | G | is bounded in terms of k . Also, we prove that the degree of the field generated by the values of all characters of a semi-rational solvable group (see Chillag and Dolfi, 2010 [1] ) or a quadratic rational solvable group over Q is bou…
Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern
1971
Abstract It is proved that totally positive quadratic forms with three or more variables and class number h = 1 exist only in a finite number of algebraic number fields. Each field allows only a finite number of such forms with bounded scale. To prove this, upper estimates for all local factors in Siegel's analytic formula are constructed by calculating explicitly numbers of solutions of quadratic congruences.
Quantum computing thanks to Bianchi groups
2018
It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…
Quadratic characters in groups of odd order
2009
Abstract We prove that in a finite group of odd order, the number of irreducible quadratic characters is the number of quadratic conjugacy classes.